

University of Natural Resources and Life Sciences, Vienna

Future challenges for (Austrian) plant breeding and opportunities from modern phenotyping approaches

Hermann Buerstmayr

Department of Agrobiotechnology and
Department of Crop Sciences

hermann.buerstmayr@boku.ac.at

② 01 47654 97102

1

The challenge: more demand for food, feed & materials **BUT land is limited**

Source: J.R Porter, University of Copenhagen, DK

3

Current global land use

- ¾ of the world's ice-free land is already used.
- Big differences in land-use intensity
- The remaining unused land is largely infertile (e.g. deserts, alpine or arctic tundra), except for remnants of pristine forests (5-7% of the ice-free land)

→ Most additional services have to come from land that is already in use (sustainable intensification & land-use competition ↑)

Erb et al. 2007. J Land Use Sci. 2, 191-224; Haberl 2015, Ecol. Econ., 119, 424-431

Courtesy: Prof. Helmut Haberl, lecture at IWGS 2017

Maize and wheat - productivity development

Example Germany, 1965-2010: Genetic improvement of wheat cultivars

Source: Ahlemeyer und Friedt, 2011: Züchtungsfortschritt bei Winterweizen

Genetic changes in stem length and yield

© Bakk Arbeit: Jakob Stark und Michael Wailzer, 2019

8

Definitions

Plant breeding*) is genetic improvement of plants for human benefit

or a bit more expanded:

Plant breeding*) is the Science, Art, and Economic Activity to genetically modify (improve) plants according to (our) human needs

*) syn. Plant Improvement

Rex Bernardo (2010, 2014) Diepenbrock, Ellmer, Léon (2005)

An alternative view - bringing innovation into the field

Source: ESA - European Seed Association

10

10

How much time is needed for breeding a new cultivar?

How much investment is needed for a new cultivar?

Breeding a new (wheat) cultivar requires typically 10 years

Breeding a new (wheat) cultivar costs typically 1 Mill €

12

Success (selection gain) in breeding rests on two basic pre-conditions

- Genetic variation for the traits of interest
- Tools and procedures to identify the desired variants (genotypes), but we often select based on the phenotypes

13

Selection through the years...

14

• Great progress in the genetic improvement of crop plants by breeders

16

Cost of one field plot for yield testing?

Cost of one genetic fingerprint with 15.000 ,markers'? 30 €

17

50 €

BIG DATA in breeding

Technology Jump Genotyping is getting cheaper

18

- Phenotype = Genotype + Environment
- $P = \sum (m_i) + E$

The challenges:

Genotyping

is getting more and more efficient and cheaper

Phenotyping

is still a bottleneck, resource demanding and expensive

20

20

Phenotyping

is still a bottleneck, resource demanding and expensive

Expectations

- In situ measurements during plant development
- Destruction-free measurements
- Measure effects of specific stresses
- Faster measurements, less labor needed
- Cheaper measurements
- · Avoid the human factor

Challenges

- Missing the human factor (the breeder's eye)
- For which traits?
- · How deal with variation that is possibly confounded with the target traits?
- How deal with genotype x environment interaction
- $\bullet \quad \text{Which type of measurements, devices, } \dots ?$
- Data handling and data analysis
- Integration in breeding programs