

The application of deep learning for quantitative disease phenotyping in UAV images

Why Quantitative Phenotyping?

Price et al. 2016 Plant Health Prog. 17(1) 49

Northern leaf blight (NLB):

Foliar disease of maize

Fungal disease caused by Setosphaeria turcica

Accounted for 25% of all yield losses from disease in 2015

Mueller et al. 2016 Plant Health Progress 17:211-222

3

Northern leaf blight (NLB):

Foliar disease of maize

Fungal disease caused by Setosphaeria turcica

Machine learning & disease phenotyping

Previous Work:

Image Classification 96.7% accuracy

Chad De Chant

De Chant et. al, Phytopathology 2017 107(11):1426-1432

5

Machine learning & disease phenotyping

Previous Work:

Image Classification 96.7% accuracy

Present

Chad De Chant

De Chant et. al, Phytopathology 2017 107(11):1426-1432

Goal:

Image Segmentation

Quantitative measures:
Number of lesions
Size of lesions
Location

High resolution geo-located images

7

u-blox

High resolution geo-located images

Mask R-CNN: versatile image segmentation

He et al, 2018. arxiv.org/pdf/1703.06870.pdf

github.com/matterport/Mask_RCNN

9

Mask R-CNN: generation of training data

3,000

Wiesner-Hanks et.al, 2018. BMC Research Notes. 2018. 11:440

Mask R-CNN: overview & training

Model Evaluation: Intersect Over Union

Model evaluation:

Intersect over Union

13

Model evaluation: Robust to challenging images

Model evaluation: Examples of miss-classification

15

Model evaluation: Model beats human

White = 'Expert' ground truth

Cyan = Lesions missed by human

Quantitative measures of NLB

17

Real world images

Real world images

19

Summary

Summary

APPLICATIONS

Research

Breeding

Disease monitoring

21

Acknowledgements

Mike Gore Nick Kaczmar

Rebeca Nelson Tyr Wiesner-Hanks Paul Stachowski Jeff Stayton Wes Baum

Hod Lipson Chad DeChant Harvey Wu

ethan.stewart@cornell.edu

